Abstract We present an innovative process to realize planar GaN microcavities, based on transferrable high-quality oxide-based Distributed-Bragg-Reflector (t-DBR) membranes. Unlike the widely used direct DBR deposition, which is not always… Click to show full abstract
Abstract We present an innovative process to realize planar GaN microcavities, based on transferrable high-quality oxide-based Distributed-Bragg-Reflector (t-DBR) membranes. Unlike the widely used direct DBR deposition, which is not always feasible, the concept of t-DBR membranes allows their versatile use as top mirrors in all kinds of vertical-cavity surface emitting geometry devices, including light emitting diodes and lasers. The process illustrated here starts by evaporating first a 4-pair SiO2/Ta2O5 DBR centered around 400 nm on a lithographically patterned GaAs substrate. The GaAs substrate is subsequently removed by wet-etching, and the released DBR membranes are transferred onto other templates for their use as top mirrors in microcavities. By transferring a 4-pair top DBR on an 8-pair bottom SiO2/Ta2O5 DBR, a distinct cavity mode appears due to the formed λ/2 oxide cavity with a Q-factor of 110. If the 4-pair top DBR is transferred on 200 nm-thick GaN/AlGaN quantum well-containing membranes sitting on 10-pair bottom DBRs, complete all-dielectric nitride polariton structures are fabricated with pronounced strong-coupling characteristics.
               
Click one of the above tabs to view related content.