LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Favorable influence of mPIAM on PSf blend membranes for ion rejection

Photo from archive.org

Abstract The study reports the use of a novel membrane for heavy metal removal and salt rejection. Poly isobutylene alt maleic anhydride (PIAM) modified by sulfanilic acid is blended with… Click to show full abstract

Abstract The study reports the use of a novel membrane for heavy metal removal and salt rejection. Poly isobutylene alt maleic anhydride (PIAM) modified by sulfanilic acid is blended with polysulfone (PSf) in different concentrations. This induces surface charge and hydrophillicity in the otherwise hydrophobic PSf membranes. The so modified polymers and their blends are characterized by spectroscopic and microscopic techniques. Blend membranes show drastically enhanced performance with respect to water flux, water uptake and ion exchange capacity. SEM micrographs indicate the hydrophilic domains, –SO 3 H groups in the polymer to have formed cavities during phase inversion process, thus enhancing permeability. 100% rejection of PEG 2000 and 59% of NaCl rejection substantiated the nature of the membrane to be nanofiltration (NF) type. The prepared membranes were further evaluated for Cr (VI) removal, with removal efficiency reaching above 92%. The electronic coupling that occurs between SO 3 H − and Na + and the electrostatic interaction between metal ions and the charge on membrane facilitates NaCl and Cr (VI) rejection respectively. The study gains significance in use of such modified PIAM as blend material with any other polymer to enhance the native properties of the blend membrane.

Keywords: influence mpiam; psf; rejection; ion; blend membranes; favorable influence

Journal Title: Journal of Membrane Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.