LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyvinylpyrrolidone modified graphene oxide as a modifier for thin film composite forward osmosis membranes

Photo by seemurray from unsplash

Abstract Polyvinylpyrrolidone (PVP) modified graphene oxide (GO), hereinafter referred to as PVP-GO, was synthesized as a novel modifier to fabricate thin film nanocomposite forward osmosis membranes. The results indicated that… Click to show full abstract

Abstract Polyvinylpyrrolidone (PVP) modified graphene oxide (GO), hereinafter referred to as PVP-GO, was synthesized as a novel modifier to fabricate thin film nanocomposite forward osmosis membranes. The results indicated that by coating PVP on the surface of GO nanosheets, the dispersibility of GO was increased and the aggregation of GO was reduced. Compared with the pristine and GO modified FO membranes, the PVP-GO modified membranes enhanced the desalination performance giving both a higher water flux and lower reverse solute flux. When using 2 mol L −1 of NaCl as the draw solution and 10 mmol L −1 NaCl as the feed solution, the water flux of the FO membrane modified with 0.0175 wt% of PVP-GO reached 33.2 LMH in the ALDS mode (the active layer facing the draw solution), which was 3.3 times higher compared with the water flux of the pristine FO membranes. Improved desalination performances of PVP-GO modified FO membranes were attributed to the better dispersibility of the PVP-GO nanosheets and increased surface hydrophilicity of the modified FO membranes. This study indicated that PVP-GO is an effective modifier to enhance the performance of FO membranes.

Keywords: graphene oxide; forward osmosis; thin film; modified membranes; modified graphene; osmosis membranes

Journal Title: Journal of Membrane Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.