LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemically stable poly(meta-terphenyl piperidinium) with highly conductive side chain for alkaline fuel cell membranes

Photo by nspm from unsplash

Abstract Poly(arylene piperidine)s (PAPs) backbones, which do not contain unstable ether bonds, was synthesized by one-pot, metal-free superacid-catalyzed polymerization for anion exchange membranes (AEMs) preparation. Meta-terphenyl as a monomer of… Click to show full abstract

Abstract Poly(arylene piperidine)s (PAPs) backbones, which do not contain unstable ether bonds, was synthesized by one-pot, metal-free superacid-catalyzed polymerization for anion exchange membranes (AEMs) preparation. Meta-terphenyl as a monomer of polymer to regulate the morphology and properties of AEM was also used due to its spatially torsional configuration instead of the recently reported linear structure of peta-terphenyl. Long flexible hydrophilic chains were grafted onto poly(meta terphenyl piperidinium) (m-PTP) backbone to form four cationic functionalized side chains, promoting efficient transfer of OH− and optimizing the hydrophilic/hydrophobic microphase separation structure. The resulting AEM shows a high ion conductivity of 164 mS/cm (m-PTP-TFPE-21) at 80 °C. Furthermore, stable piperidine cation and long alkyl spacer chain contributed to the excellent alkali stability of m-PTP-TFPE-TQA membrane which shows only 11.67% and 12.73% degradation in ion conductivity and IEC, respectively, after soaking in 2 M NaOH at 80 °C for 1500 h. The peak power density of the H2/O2 single cell using m-PTP-TFPE-14 is 269 mW/cm2 at a current density of 540 mA/cm2 at 80 °C.

Keywords: meta terphenyl; poly meta; terphenyl piperidinium; meta; side

Journal Title: Journal of Membrane Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.