LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Control of the antagonistic effects of heat-assisted chlorine oxidative degradation on pressure retarded osmosis thin film composite membrane surface

Photo from wikipedia

Abstract During pressure retarded osmosis (PRO) operation, thin film composite (TFC) membranes are continuously exposed to chemicals present in the stream that can deteriorate the membrane's selective layer with exposure… Click to show full abstract

Abstract During pressure retarded osmosis (PRO) operation, thin film composite (TFC) membranes are continuously exposed to chemicals present in the stream that can deteriorate the membrane's selective layer with exposure time. Following this observation, TFC membranes are placed in controlled oxidative degradation conditions using aqueous NaOCl solutions. Active chlorine, along with heat, can thin out the dense layer and, when controlled and optimized, can tune the membrane surface properties and separation efficiency as desirable for specific applications. The chlorine oxidative degradation is optimized in terms of chlorine exposure (a factor of both exposure time and chemical dosage), solution pH, and the subsequent heating time. After the chemical modification process, the membrane surface properties were characterized and the PRO performance as well as the osmotic energy harvesting capability were determined. The modified membranes exhibited different levels of polyamide degradation and increase in water permeability, which came along with decrease in selectivity. Optimization of the chlorine oxidative degradation using response surface methodology was performed to maximize the water permeability and extractable osmotic power while keeping salt rejection satisfactory. After performing chlorine oxidation at the following optimized conditions: 3025 ppm Cl2·h, pH 10.72, and 3 min heating time, initial non-pressure retarded water flux of 73.2 L m−2 h−1, specific reverse solute flux of 1.17 g L−1, and power density of 18.71 W m−2 (corresponding to water flux of 56.1 L m-2 h-1) at 12 bar were obtained using 0.6 M NaCl as draw and deionized water as feed.

Keywords: membrane surface; oxidative degradation; membrane; degradation; pressure retarded

Journal Title: Journal of Membrane Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.