LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Curcumin-3,4-Dichloro Phenyl Pyrazole (CDPP) overcomes curcumin's low bioavailability, inhibits adipogenesis and ameliorates dyslipidemia by activating reverse cholesterol transport.

Photo by lureofadventure from unsplash

BACKGROUND Adipocyte dysfunction, obesity and associated metabolic disorders are of prime healthcare concern worldwide. Among available medications, natural products and inspired molecules hold 40% space in clinically prescribed medicines. In… Click to show full abstract

BACKGROUND Adipocyte dysfunction, obesity and associated metabolic disorders are of prime healthcare concern worldwide. Among available medications, natural products and inspired molecules hold 40% space in clinically prescribed medicines. In queue, this study overcomes the drawback of curcumin's low bioavailability with potent anti-adipogenic and anti-dyslipidemic activity. METHODS To evaluate the role of CDPP on adipocyte differentiation, 3T3-L1 adipocytes were used as an in-vitro model. Flow cytometry was performed for cell cycle analysis. Syrian golden hamsters were used to study pharmacokinetic profile and dyslipidemic activity exhibited by CDPP. RESULT CDPP was found to be a potent inhibitor of adipogenesis in-vitro. It blocked mitotic clonal expansion by causing cell cycle arrest. CDPP showed marked improvement in gastrointestinal stability and bioavailability in-vivo as compared to curcumin. Administration of CDPP (100mg/kg) significantly improved HFD induced dyslipidemic profile in hamsters and activated reverse cholesterol transport machinery. CONCLUSION CDPP could be used as a potential drug candidate against adipogenesis and dyslipidemia with enhanced gastrointestinal stability and bioavailability.

Keywords: reverse cholesterol; curcumin low; cdpp; bioavailability; adipogenesis; low bioavailability

Journal Title: Metabolism: clinical and experimental
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.