LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Skeletal muscle ceramides and daily fat oxidation in obesity and diabetes.

Photo from wikipedia

BACKGROUND/OBJECTIVES Ectopic accumulation of lipids in skeletal muscle and the formation of deleterious lipid intermediates is thought to contribute to the development of insulin resistance and type 2 diabetes mellitus… Click to show full abstract

BACKGROUND/OBJECTIVES Ectopic accumulation of lipids in skeletal muscle and the formation of deleterious lipid intermediates is thought to contribute to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Similarly, impaired fat oxidation (metabolic inflexibility) are predictors of weight gain and the development of T2DM; however, no study has investigated the relation between muscle ceramide accumulation and 24-hour macronutrient oxidation. The purpose of this study was to retrospectively explore the relationships between whole body fat oxidation and skeletal muscle ceramide accumulation in obese non-diabetic individuals (ND) and in people with obesity and T2DM. METHODS Daily substrate oxidation was measured in a respiratory chamber and skeletal muscle ceramides were measured using liquid chromatographyelectrospray ionization tandem-mass spectrometry. RESULTS After adjusting for sex, age, and BMI, no differences existed between the groups for fat oxidation or 24-h RQ. However, ceramides C18:1, C:20, C22, C24 and C24:1 were significantly higher in people with T2DM compared to ND whereas no differences existed for C16 and C18. Despite low amounts of muscle ceramides, fat oxidation rates were positively associated with ceramide species concentration in ND only. Our data suggests that ceramides do not interfere with whole-body fat oxidation in ND individuals whereas a persistent lipid oversupply results in excessive ceramide muscle accumulation in people with T2DM.

Keywords: skeletal muscle; accumulation; oxidation; muscle; fat oxidation; muscle ceramides

Journal Title: Metabolism: clinical and experimental
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.