LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulation of hepatic fibrosis by Carcinoembryonic Antigen-related Cell Adhesion Molecule 1.

Photo by niaid from unsplash

OBJECTIVE NAFLD is a complex disease marked by cellular abnormalities leading to NASH. NAFLD patients manifest low hepatic levels of CEACAM1, a promoter of insulin clearance. Consistently, Cc1-/- null mice… Click to show full abstract

OBJECTIVE NAFLD is a complex disease marked by cellular abnormalities leading to NASH. NAFLD patients manifest low hepatic levels of CEACAM1, a promoter of insulin clearance. Consistently, Cc1-/- null mice displayed spontaneous hyperinsulinemia/insulin resistance and steatohepatitis. Liver-specific reconstitution of Ceacam1 reversed these metabolic anomalies in 8-month-old Cc1-/-xliver+ mice fed a regular chow diet. The current study examined whether it would also reverse progressive hepatic fibrosis in mice fed a high-fat (HF) diet. METHODS 3-month-old mice were fed a high-fat diet for 3-5 months, and metabolic and histopathological analysis were conducted to evaluate their NASH phenotype. RESULTS Reconstituting CEACAM1 to Cc1-/- livers curbed diet-induced liver dysfunction and NASH, including macrovesicular steatosis, lobular inflammation, apoptosis, oxidative stress, and chicken-wire bridging fibrosis. Persistence of hepatic fibrosis in HF-fed Cc1-/- treated with nicotinic acid demonstrated a limited role for lipolysis and adipokine release in hepatic fibrosis caused by Ceacam1 deletion. CONCLUSIONS Restored metabolic and histopathological phenotype of HF-fed Cc1-/-xliver+ assigned a critical role for hepatic CEACAM1 in preventing NAFLD/NASH including progressive hepatic fibrosis.

Keywords: fibrosis; fibrosis carcinoembryonic; hepatic fibrosis; regulation hepatic; mice fed

Journal Title: Metabolism: clinical and experimental
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.