LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

How bacteria control the CRISPR-Cas arsenal.

Photo from archive.org

CRISPR-Cas systems are adaptive immune systems that protect their hosts from predation by bacteriophages (phages) and parasitism by other mobile genetic elements (MGEs). Given the potent nuclease activity of CRISPR… Click to show full abstract

CRISPR-Cas systems are adaptive immune systems that protect their hosts from predation by bacteriophages (phages) and parasitism by other mobile genetic elements (MGEs). Given the potent nuclease activity of CRISPR effectors, these enzymes must be carefully regulated to minimize toxicity and maximize anti-phage immunity. While attention has been given to the transcriptional regulation of these systems (reviewed in [1]), less consideration has been given to the crucial post-translational processes that govern enzyme activation and inactivation. Here, we review recent findings that describe how Cas nucleases are controlled in diverse systems to provide a robust anti-viral response while limiting auto-immunity. We also draw comparisons to a distinct bacterial immune system, restriction-modification.

Keywords: bacteria control; cas arsenal; crispr cas; control crispr; microbiology

Journal Title: Current opinion in microbiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.