LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Use of agricultural waste (coconut shell) for the synthesis of silver nanoparticles and evaluation of their antibacterial activity against selected human pathogens.

Photo by gardnerjorge from unsplash

Green synthesis of silver nanoparticles (AgNPs) is environmentally satisfactory because of their low cost and safe to nature. In the present study, extract of an agricultural waste, coconut (Cocos nucifera)… Click to show full abstract

Green synthesis of silver nanoparticles (AgNPs) is environmentally satisfactory because of their low cost and safe to nature. In the present study, extract of an agricultural waste, coconut (Cocos nucifera) shell is used to synthesize AgNPs and their antibacterial effect was investigated against selected human pathogens Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium. The AgNPs synthesized using coconut shell extract (CSE-AgNPs) were characterized using UV-Visible spectroscopy (absorption peak at 432 nm), Transmission Electron Microscopy (spherical shaped particles size of 14.2-22.96 nm), Fourier-Transform Infrared Spectroscopy indicating the CSE capping around the AgNPs (Peaks 1384, 1609 and 3418 corresponds to organic molecules) and X-Ray Diffraction (Peak at 32.078 and 2-Theta). CSE-AgNPs exhibited zone of inhibition against S. aureus (15 mm), E. coli (13 mm), S. typhimurium (13 mm) and L. monocytogenes (10 mm) and minimum inhibitory concentration (MIC) of 26, 53, 106 and 212 μg/ml, respectively. Growth curve assay showed the effectiveness of CSE-AgNPs to inhibit the selected pathogens when compared to amphicillin control and extract. Scanning electron microscopy results indicated that the cell wall degradation might be the possible mechanism of antibacterial action of CSE-AgNPs. Different concentrations of AgNPs (0.078-2.5 mg/ml) showed no toxicity against human PBMC cell line. Hence, such highly effective CSE-AgNPs could be explored as antibacterial agent.

Keywords: coconut; microscopy; cse agnps; cse; shell

Journal Title: Microbial pathogenesis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.