LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding the pathogenesis of Flavobacterium psychrophilum using the rainbow trout monocyte/macrophage-like cell line, RTS11, as an infection model.

Photo by nci from unsplash

The life cycle of Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), appears to involve interactions with spleen and head kidney… Click to show full abstract

The life cycle of Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), appears to involve interactions with spleen and head kidney macrophages. To develop an in vitro model for studying this, F. psychrophilum was incubated with a rainbow trout splenic monocyte/macrophage-like cell line (RTS11) and fundamental macrophage functions evaluated. The animal cell basal medium, L15, supplemented with bovine serum (FBS) supports RTS11 maintenance, and surprisingly, L15 with 2% FBS (L15/FBS) also supported F. psychrophilum growth. L15/FBS in which the bacteria had been grown is referred to as F. psychrophilum conditioned medium (FpCM). Adding FpCM to RTS11 cultures caused a small, yet significant, percentage of cells to die, many cells to become more diffuse, and phagocytosis to be temporarily reduced. FpCM also significantly stimulated transcript expression for pro-inflammatory cytokines (IL-1β, TNFα and IL-6) and the anti-inflammatory cytokine (IL-10) after one day of exposure but this upregulation rapidly declined over time. Adding live F. psychrophilum to RTS11 cultures also altered the cellular morphology and stimulated cytokine expression more profoundly than FpCM. Additionally, the phagocytic activity of RTS11 was also significantly impaired by live F. psychrophilum, but not to the same extent as when exposed to FpCM. Adding heat-killed bacteria to RTS11 cultures elicited few changes. These bacteria/RTS11 co-cultures should be useful for gaining a deeper understanding of the pathogenesis of F. psychrophilum and may aid in the development of effective measures to prevent infection and spread of this troublesome disease.

Keywords: psychrophilum; rts11; macrophage; rainbow trout; cell

Journal Title: Microbial pathogenesis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.