LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The suppressive effect of bacterial-feeding nematodes on hemocyte spreading of Galleria mellonella.

Photo by ronaldlangeveld from unsplash

Insect parasitic nematodes have developed a mechanism to escape from the cellular immunity of their insect hosts for successful parasitism. However, the detailed mechanism whereby they achieve this remains unclear.… Click to show full abstract

Insect parasitic nematodes have developed a mechanism to escape from the cellular immunity of their insect hosts for successful parasitism. However, the detailed mechanism whereby they achieve this remains unclear. In our previous study, we demonstrated that non-parasitic nematodes such as Caenorhabditis elegans potentially have the ability to escape from the cellular immunity of the greater wax moth Galleria mellonella. Here we aimed to clarify the effect of non-parasitic and parasitic nematodes on the spreading of hemocytes-an essential cellular reaction for adhering to a foreign substance -from G. mellonella larvae. The hexane/methanol extract of C. elegans inhibited the spreading of hemocytes. Using 2D-TLC and reversed-phase HPLC, we detected a single peak that inhibited the spreading of hemocytes. In addition, the spreading of hemocytes recovered from C. elegans-injected insects was significantly delayed. Western blotting analysis showed that phosphorylated extracellular signal-regulated protein kinase (ERK) -an essential signaling component for spreading in hemocytes-was decreased by the injection of C. elegans, and that plasma from nematode-injected insects contained the factor that causes the decrease of phosphorylated ERK. We also observed this phenomenon using other non-parasitic and parasitic bacterial-feeding nematodes. These results suggest that the factors inhibiting hemocyte adhesion and delaying the spreading of hemocytes are conserved in bacterial-feeding nematodes and could be a pre-adaptation for parasitism.

Keywords: spreading hemocytes; effect; galleria mellonella; bacterial feeding; feeding nematodes

Journal Title: Microbial pathogenesis
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.