LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distribution of virulence determinants in Streptococcus agalactiae recovered from different clinical sources.

Photo from wikipedia

Streptococcus agalactiae (group B Streptococcus, GBS) is a pathobiont, a member of human microbiota that can change from commensal to pathogen, causing a large spectrum of diseases. This study assessed… Click to show full abstract

Streptococcus agalactiae (group B Streptococcus, GBS) is a pathobiont, a member of human microbiota that can change from commensal to pathogen, causing a large spectrum of diseases. This study assessed virulence determinants of 32 GBS isolates recovered from different clinical sources associated with asymptomatic and symptomatic clinical outcomes that present distinct capsular types and antimicrobial resistance profiles. The ability of a unique strain to colonize and cause infection in different subjects was also evaluated. By PFGE analysis, it was observed that a given strain could be associated with both asymptomatic and symptomatic outcomes. Cell wall anchor proteins β and alpha C encoding genes (bac and bca, respectively) were detected in all capsular type Ib isolates. bca was more frequent among asymptomatic outcome-related isolates, as well as high expression of β-hemolysin/cytolysin (β-H/C). Symptomatic outcome-related isolates produced strong biofilm more frequently. All bacterial isolates recovered from urine were strong biofilm producers. In growth experiments, asymptomatic outcome-related isolates grew faster after 2 h until the end of the log phase. Taken together, these findings show virulence genotypic and phenotypic features of GBS from distinct sources, which may be helpful to understand their pathogenic potential and predict different clinical outcomes.

Keywords: clinical sources; recovered different; virulence; streptococcus agalactiae; virulence determinants; different clinical

Journal Title: Microbial pathogenesis
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.