The bacterium Helicobacter pylori infects more than 50% of the world population and causes several gastroduodenal diseases, including gastric cancer. Nevertheless, we still need to explore some protein interactions that… Click to show full abstract
The bacterium Helicobacter pylori infects more than 50% of the world population and causes several gastroduodenal diseases, including gastric cancer. Nevertheless, we still need to explore some protein interactions that may be involved in pathogenesis. MreB, an actin homolog, showed some special characteristics in previous studies, indicating that it could have different functions. Protein functions could be realized via protein-protein interactions. In the present study, the MreB protein from H. pylori 26695 fused with two tags 10Ă—His and GST in tandem was overexpressed and purified from Escherchia coli. The purified recombinant protein was used to perform a pull-down assay with H. pylori 26695 cell lysate. The pulled-down proteins were identified by mass spectrometry (MALDI-TOF), in which the known important proteins related to morphogenesis were absent but several proteins related to pathogenesis process were observed. The bacterial two-hybrid system was further used to evaluate the protein interactions and showed that new interactions of MreB respectively with VacA, UreB, HydB, HylB and AddA were confirmed but the interaction MreB-MreC was not validated. These results indicated that the protein MreB in H. pylori has a distinct interactome, does not participate in cell morphogenesis via MreB-MreC but could be related to pathogenesis.
               
Click one of the above tabs to view related content.