LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon

Photo from wikipedia

Abstract Bio-MOF-1 was pyrolyzed at 1000 °C to obtain highly porous carbon containing oxygen and nitrogen. The bio-MOF-derived carbons (BMDCs) were firstly applied in the adsorptive removal of four pharmaceuticals and… Click to show full abstract

Abstract Bio-MOF-1 was pyrolyzed at 1000 °C to obtain highly porous carbon containing oxygen and nitrogen. The bio-MOF-derived carbons (BMDCs) were firstly applied in the adsorptive removal of four pharmaceuticals and personal care products (PPCPs), with a wide range of acidities or basicities, from water. BMDC-12 h, obtained by pyrolysis for 12 h, was very competitive in the adsorption of PPCPs, in terms of both adsorption rate and adsorbed quantity. More importantly, carbon showed the highest adsorption capacities for both basic atenolol (ATNL; 552 mg/g) and acidic clofibric acid (CLFA; 540 mg/g) among all the adsorbents reported so far. The recyclability of BMDC-12 h in adsorption was also confirmed (after solvent washing) by both adsorption and characterization (by nitrogen adsorption and FTIR analyses). The plausible adsorption mechanism was also suggested based on the effect of solution pH on the adsorbed amounts of PPCPs. Electrostatic interaction was the primary mechanism for the adsorption of ATNL. However, CLFA adsorption could be explained mainly by H-bonding, where CLFA was the acceptor for hydrogen donated from BMDC-12 h. BMDC-12 h was suggested as a promising adsorbent for the removal of a wide range of PPCPs from water, based on the remarkably high adsorption capacity, rapid adsorption, and stable reusability.

Keywords: adsorption; carbon; removal; bio mof; wide range

Journal Title: Microporous and Mesoporous Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.