LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BSA modified, disulfide-bridged mesoporous silica with low biotoxicity for dual-responsive drug delivery

Abstract Siliceous materials based intelligent drug delivery systems (DDS) have attracted numerous attentions. Unfortunately, their intrinsic biologic inertia and non-degradability are critical issues need to be addressed because it hampers… Click to show full abstract

Abstract Siliceous materials based intelligent drug delivery systems (DDS) have attracted numerous attentions. Unfortunately, their intrinsic biologic inertia and non-degradability are critical issues need to be addressed because it hampers further clinical translation application. Herein, disulfide-bridged mesoporous silica nanoparticles (designed as mSiO2(s-s)) have been synthesized through nucleophilic substitution reaction, which have biodegradability in simulative tumor reducing conditions. Furthermore, folic acid (FA) decorated bull serum albumin (BSA) has been modified onto the surface of mSiO2(s-s) to improve tissue biocompatibility, prevent anticancer drugs leakage and endow effective targeting capacity. Therefore, the nanoparticles present good biodegradability, tissue biocompatibility, tumor cell targeting capacity and pH/glutathione (GSH) dual-responsive drug release capacity. This novel drug nanocarrier possesses biosafety and effective anti-cancer strategy, provides significant promising in future biomedical application.

Keywords: mesoporous silica; bsa modified; drug; bridged mesoporous; drug delivery; disulfide bridged

Journal Title: Microporous and Mesoporous Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.