Abstract Porous organic polymers (POPs) have attracted great attention in recent years as promising materials for heterogeneous metal catalysis. Herein, we report the facile synthesis of [2,6-bis(1,2,3-triazol-4-yl)pyridine] (BTP) functionalized porous… Click to show full abstract
Abstract Porous organic polymers (POPs) have attracted great attention in recent years as promising materials for heterogeneous metal catalysis. Herein, we report the facile synthesis of [2,6-bis(1,2,3-triazol-4-yl)pyridine] (BTP) functionalized porous organic polymer (PBPTP) through thiophene-based oxidative coupling. PBPTP can be successfully metalated with Cu salts to form heterogeneous Cu catalysts (CuCl-PBPTP and CuBr-PBPTP). The resulting catalysts possess micro/meso-porosities, and have Cu contents of 4.41 wt% and 3.36 wt%, respectively. Particularly, the catalyst CuBr-PBPTP showed excellent reactivity in azide-alkyne cycloaddition in aqueous media and afforded the products in 92–99% yields. Moreover, the catalyst showed outstanding stability and recyclability, which could be reused several cycles without obvious loss of its catalytic activity.
               
Click one of the above tabs to view related content.