LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Early SEU sensitivity assessment for collaborative hardening techniques: A case study of OPTOS processing architecture

Photo by thoughtcatalog from unsplash

Abstract Nowadays, space missions face a relentless increase in requirements for on-board computers. Higher computing capacities are needed, while the power consumption, mass and area must be reduced. Unfortunately, requirements… Click to show full abstract

Abstract Nowadays, space missions face a relentless increase in requirements for on-board computers. Higher computing capacities are needed, while the power consumption, mass and area must be reduced. Unfortunately, requirements evolve faster than the ability of manufacturers to develop better space-qualified processors, so techniques that allow designers to use COTS (commercial, off-the-shelf) components are needed. As such, collaborative hardening is a powerful an efficient technique to guarantee the reliability of the safety critical tasks of a satellite. However, the stringent dependability requirements of space missions call for comprehensive on-ground validation of any design using COTS components before it can be used in orbit. In this work, we present the collaborative hardening techniques developed for the OPTOS satellite, and how it was on-ground validated against the effects of radiation. We introduce a methodology for early SEU sensitivity assessment based on fault injection through an autonomous emulation system. Fault injection is performed at system level, not unit level, to validate the safety critical techniques implemented by the collaborative architecture. The experimental results show that, while single units are vulnerable to the effects of radiation, the reliability of the system as a whole is not compromised.

Keywords: seu sensitivity; sensitivity assessment; hardening techniques; early seu; hardening; collaborative hardening

Journal Title: Microelectronics Reliability
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.