LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of cone crusher performance with changes in material properties and operating conditions using DEM

Photo by charlesdeluvio from unsplash

Discrete Element Method (DEM) simulation with non-round particles and including breakage has been used to understand the breakage behaviour and operating performance of an industrial scale cone crusher using a… Click to show full abstract

Discrete Element Method (DEM) simulation with non-round particles and including breakage has been used to understand the breakage behaviour and operating performance of an industrial scale cone crusher using a representative ore. The breakage model uses a replacement strategy and impact energy specific progeny size data from a Drop Weight Test (DWT). There is a strong variation in the breakage behaviour with height in the compression region as the differing profiles of the concave and mantle create five different regions with monotonically decreasing width and differing degrees of convergence between the surfaces. These control the rate of motion and the ability to load and break the particles, and determine whether high forces are generated via multi-particle stress chains or as single particle loading directly from the liner surfaces. The larger feed particles jam in the compression zone prior to breakage and cause observable obstruction to the flow of finer material and strong non-uniformity in the flow of product down the lower part of the mantle. Trends in the coarseness of product and changes in steady state throughput are identified with changes in material properties (rock breakage energy and friction coefficient) and crusher operating parameters (Closed Side Setting and crusher rotation rate).

Keywords: cone crusher; crusher; breakage; performance; material properties; changes material

Journal Title: Minerals Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.