LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential

Photo from wikipedia

Abstract The alkali activation of mine tailings is of interest to diminish the impoundment storage of large waste stream from mining industry. However, most of the mine tailings, like phosphate… Click to show full abstract

Abstract The alkali activation of mine tailings is of interest to diminish the impoundment storage of large waste stream from mining industry. However, most of the mine tailings, like phosphate mine tailings generated in Finland, are rather inert and need pre-treatment to induce the reactivity for alkali activation. In this work, mechanochemical treatment was conducted to improve the reactivity of phosphate mine tailings. The ground specimens were subjected to the crystal structural analysis of X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermal analyses by Thermogravimetry/Differential Thermal Analysis (TG/DTA), showing the increment of amorphous content and structural degradation as a function of grinding time. The subsequent alkaline reactivity test illustrated incremental alkaline dissolution of Si, Al and K and a schematic diagram of altered phlogopite structure (sources of aluminosilicates in tailings) was also proposed. Additionally, the mineralogical composition of individual particles was carried out by mineral liberation analysis (MLA), thereby evaluating the influence of pre-treatment on the mineralogy of tailings. The results indicate profound micromorphological changes and structural cleavage of the precursor due to grinding, which strongly increase alkaline reactivity.

Keywords: alkali activation; mechanochemical treatment; treatment; mine tailings

Journal Title: Minerals Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.