LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-Molecule Imaging of mRNA Localization and Regulation during the Integrated Stress Response.

Photo from wikipedia

Biological phase transitions form membrane-less organelles that generate distinct cellular environments. How molecules are partitioned between these compartments and the surrounding cellular space and the functional consequence of this localization… Click to show full abstract

Biological phase transitions form membrane-less organelles that generate distinct cellular environments. How molecules are partitioned between these compartments and the surrounding cellular space and the functional consequence of this localization is not well understood. Here, we report the localization of mRNA to stress granules (SGs) and processing bodies (PBs) and its effect on translation and degradation during the integrated stress response. Using single mRNA imaging in living human cells, we find that the interactions of mRNAs with SGs and PBs have different dynamics, very few mRNAs directly move between SGs and PBs, and that specific RNA-binding proteins can anchor mRNAs within these compartments. During recovery from stress, we show that mRNAs that were within SGs and PBs are translated and degraded at similar rates as their cytosolic counterparts. Our work provides a framework for using single-molecule measurements to directly investigate the molecular mechanisms of phase-separated compartments within their cellular environment.

Keywords: localization; integrated stress; single molecule; stress response

Journal Title: Molecular cell
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.