LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

R-DeeP: Proteome-wide and Quantitative Identification of RNA-Dependent Proteins by Density Gradient Ultracentrifugation.

Photo from wikipedia

The comprehensive but specific identification of RNA-binding proteins as well as the discovery of RNA-associated protein functions remain major challenges in RNA biology. Here we adapt the concept of RNA… Click to show full abstract

The comprehensive but specific identification of RNA-binding proteins as well as the discovery of RNA-associated protein functions remain major challenges in RNA biology. Here we adapt the concept of RNA dependence, defining a protein as RNA dependent when its interactome depends on RNA. We converted this concept into a proteome-wide, unbiased, and enrichment-free screen called R-DeeP (RNA-dependent proteins), based on density gradient ultracentrifugation. Quantitative mass spectrometry identified 1,784 RNA-dependent proteins, including 537 lacking known links to RNA. Exploiting the quantitative nature of R-DeeP, proteins were classified as not, partially, or completely RNA dependent. R-DeeP identified the transcription factor CTCF as completely RNA dependent, and we uncovered that RNA is required for the CTCF-chromatin association. Additionally, R-DeeP allows reconstruction of protein complexes based on co-segregation. The whole dataset is available at http://R-DeeP.dkfz.de, providing proteome-wide, specific, and quantitative identification of proteins with RNA-dependent interactions and aiming at future functional discovery of RNA-protein complexes.

Keywords: identification rna; rna dependent; rna; dependent proteins; proteome wide

Journal Title: Molecular cell
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.