LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coarse-grained molecular dynamics study on the rheological behaviors of surfactant aqueous solution

Photo from wikipedia

Abstract The rheological behavior in a binary system of cetyltrimethylammonium chloride (CTAC) and counter ion salts aqueous solution was studied using MARTINI force field coarse-grained molecular dynamics (CGMD) simulations. The… Click to show full abstract

Abstract The rheological behavior in a binary system of cetyltrimethylammonium chloride (CTAC) and counter ion salts aqueous solution was studied using MARTINI force field coarse-grained molecular dynamics (CGMD) simulations. The results show that the shear viscosity of the surfactant aqueous solution has a plateau at low shear rates and a shear-thinning regime at high shear rates, which are consistent with the published data. Meanwhile, the shear viscosity increases with increasing the concentration ratio (R) of the counter ion salt to CTAC surfactant, but when R > 1.0, the shear viscosity increases slowly and it appears to reach a plateau. This simulation result agrees with Sureshkumar's report that the mechanical properties of a surfactant-counter ion salt micelle will be stable when CTA+ ions carry the maximum number of Sal− ions (R = 1.0). Then the correlation between the shear viscosity and the micellar structure was analyzed by investigating the micelle morphology and the final largest micelle size under various shear flows. It shows that the network, branched, and wormlike micelles formed by low shear rate, no shear rate, and high shear rate, respectively. The network structure corresponds to the highest shear viscosity and the wormlike resulting in the lowest viscosity. Furthermore, the simulation suggests that increasing temperature and/or shear rate can promote the micelle growth in surfactant aqueous solution. At last, we simulated the effect of counter ion salts on the micelle formation and found that the final largest micelle of CTAC/NamSal binary system is bigger than that of CTAC/NaSal followed by CTAC/NaCl, which agrees with the published experiments.

Keywords: micelle; shear viscosity; surfactant aqueous; solution; aqueous solution

Journal Title: Journal of Molecular Liquids
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.