LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co1−XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: Synthesis, characterization and in vivo and in vitro biocompatibility study

Photo by schluditsch from unsplash

Abstract The present paper aimed to synthesize, using thermal-treatment method, a variety of Co1-XZnxFe2O4-based nanocarriers (NCs) as Dual-controlled and targeted drug delivery systems (DDS) and provide a new structure as… Click to show full abstract

Abstract The present paper aimed to synthesize, using thermal-treatment method, a variety of Co1-XZnxFe2O4-based nanocarriers (NCs) as Dual-controlled and targeted drug delivery systems (DDS) and provide a new structure as NCs suitable for the loading and pH-responsive characteristics of the chemotherapeutic curcumin (CUR). To study the structure, surface morphology, surface charge and magnetic properties of NCs, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), Zetasizer and vibrating sample magnetometer (VSM) were applied here. TEM images of Co0.2Zn0.8Fe2O4 (Co-0.2) showed that NCs had a uniform spherical mesoporous morphology with an average grain size of about ∼17 nm. Also, it was found that Drug loading was very high, about 22.70 and 21.99 for Co0.6Zn0.4Fe2O4 (Co-0.6) and Co0.4Zn0.6Fe2O4 (Co-0.4), respectively. As indicated, NCs had highly pH-dependent drug release behavior, although different and unique in every one of them, which could be related to zeta potential of Co-0.6. In fact, the neutral zeta potential of Co-0.6 became positive when the pH of releasing media changed from 7.4 to 5.5. Consequently, the hydrogen bond between the Co-0.6 and CUR brake. Therefore, as expected, drug releasing varied from Co-0.6 to about 54% at pH 5.5, rather 29% at pH 7.4. To determine the cytotoxicity of NCs, hemolysis assay, MTT assay and acute toxicity test were used. The tests showed that NCs had the least in vitro and in vivo cytotoxicity and NCs, as a result, could be regarded to be nontoxic. MTT results demonstrated that drug loaded NCs had the same cell viability as bare drugs. Then, it can be concluded that these NCs have the potential required to act as drug delivery systems for anti-cancer drugs delivery such as CUR.

Keywords: xznxfe2o4 based; drug; based nanocarriers; drug delivery; co1 xznxfe2o4; delivery

Journal Title: Journal of Molecular Liquids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.