LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polymodal rheological behaviors induced by self-assembly of surfactants confined in nanotubes

Photo from wikipedia

Abstract Self-assembly is currently one of the most studied branches of materials chemistry, and has attracted a lot of attention due to its diverse potential applications in electronics, engineering, biomedical,… Click to show full abstract

Abstract Self-assembly is currently one of the most studied branches of materials chemistry, and has attracted a lot of attention due to its diverse potential applications in electronics, engineering, biomedical, and optical fields. Thus far, many previous studies have reported on the self-assembly of surfactants for developing various functional materials. In this study, we focus on the chemical nature of the wall surface as a critical parameter which can drastically change the self-assembled structure. We have studied the rheological properties of surfactant solutions in chemically distinct nanotubes using a computer simulation. Graphs of the Weissenberg number (Wi) versus the viscosity (η) in hydrophilic, hydroneutral, and hydrophobic nanotubes at different concentrations of surfactant were derived. We found that differences in the viscosity can be obtained depending on the chemical nature of the wall surface, even in systems without surfactant molecules. With the surfactant molecules, characteristic viscosity behaviors were observed with rich steady-state morphologies. For example, although the concentration of the surfactant is the same (c = 30%), completely different viscosity behaviors were observed in hydrophilic (shear-thinning) and hydrophobic (shear-thickening) nanotubes. Our simulations offer a guide to controlling the rheological properties of surfactant aqueous solutions by altering the chemical nature of the wall surface and elucidating the effects of confinement, the concentration of the surfactant aqueous solution, and the self-assembled structure.

Keywords: chemical nature; viscosity; wall surface; nature wall; self assembly; assembly surfactants

Journal Title: Journal of Molecular Liquids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.