LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Slow dynamics of hydration water and the trehalose dynamical transition

Photo from wikipedia

Abstract We present results from molecular dynamics simulations of a solution of water and trehalose, a cryoprotecting disaccharide, upon cooling. We focus our attention on both the dynamics of hydration… Click to show full abstract

Abstract We present results from molecular dynamics simulations of a solution of water and trehalose, a cryoprotecting disaccharide, upon cooling. We focus our attention on both the dynamics of hydration water and of the trehalose. Hydration water presents two slow relaxations. One is the α relaxation typical of glass formers and the second one is a long relaxation that was also found in proteins hydration water and appears coupled to the movement of the surface of trehaloses. Below 280 K trehalose aggregates and upon further cooling we find a dynamical transition for the trehalose aggregate at around 250 K similar to the well known Protein Dynamical Transition. When this transition happens the long relaxation time has a dynamical crossover. We hypothesize that this dynamical transition is a general feature that can be found not only in proteins but also in aggregates that interact with water and that have a flexible structure. In fact this feature has already been found not only in proteins hydration water but also in a colloidal microgel. In the known cases, including the one that we present here, water enhances movements of the surface of these aggregates above a certain temperature. The temperature of this dynamical transition ranges between 260 K and 220 K in all known cases.

Keywords: hydration water; water; dynamical transition; transition; water trehalose

Journal Title: Journal of Molecular Liquids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.