LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental study on thermophysical properties of alumina nanoparticle enhanced ionic liquids

Photo from wikipedia

Abstract In this experimental study, several alumina Nanoparticle Enhanced Ionic Liquids were prepared and studied in regard to their stability, pH, density and thermal conductivity. These new fluids were manufactured… Click to show full abstract

Abstract In this experimental study, several alumina Nanoparticle Enhanced Ionic Liquids were prepared and studied in regard to their stability, pH, density and thermal conductivity. These new fluids were manufactured by dispersing aluminium oxide nanoparticles in different mixtures based on water and 1-ethyl-3-methylimidazolium methanesulfonate ionic liquid. Furthermore, thermophysical properties (density, thermal conductivity) of pure and binary mixtures with water and 1-ethyl-3-methylimidazolium methanesulfonate were studied in order to select and propose base fluids to design new advanced heat transfer fluids. The pH of the dispersions was determined as around 8.0–8.5. In regard to density, the overall [C2mim][CH3SO3] density is higher by 25% than that of water and the influence of ionic liquid density over the mixtures was found to be much higher than that of water, while for the alumina Nanoparticle Enhanced Ionic Liquids the density respects classical equations. Evaluation of thermal conductivity revealed an increase of up to 13% in thermal conductivity when nanoparticles are added to the base fluids and new correlations based on mass fraction and temperature were proposed.

Keywords: experimental study; alumina nanoparticle; enhanced ionic; density; nanoparticle enhanced; ionic liquids

Journal Title: Journal of Molecular Liquids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.