LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic differences in the effects of sucrose and sucralose on the phase stability of lysozyme solutions

Photo from wikipedia

Abstract The effect of two disaccharide analogues, sucrose and sucralose, on the phase stability of aqueous lysozyme solutions has been addressed from a mechanistic viewpoint by a combination of experiment… Click to show full abstract

Abstract The effect of two disaccharide analogues, sucrose and sucralose, on the phase stability of aqueous lysozyme solutions has been addressed from a mechanistic viewpoint by a combination of experiment and molecular dynamics (MD) simulations. The influence of the added low molecular weight salts (NaBr, NaI and NaNO3) was considered as well. The cloud-point temperature measurements revealed a larger stabilizing effect of sucralose. Upon increasing sugar concentration, the protein solutions became more stable and differences in the effect of sucralose and sucrose amplified. It was confirmed that the addition of either of the two sugars imposed no secondary structure changes of the lysozyme. Enthalpies of lysozyme-sugar mixing were exothermic and a larger effect was recorded for sucralose. MD simulations indicated that acidic, basic and polar amino acid residues play predominant roles in the sugar-protein interactions, mainly through hydrogen bonding. Such sugar mediated protein-protein interactions are thought to be responsible for the biopreserative nature of sugars. Our observations hint at mechanistic differences in sugar-lysozyme interactions: while sucrose does not interact directly with the protein's surface for the most part (in line with the preferential hydration hypothesis), sucralose forms hydrogen bonds with acidic, basic and polar amino acid residues at the lysozyme's surface (in line with the water replacement hypothesis).

Keywords: mechanistic differences; lysozyme solutions; effect; sucrose sucralose; phase stability; sucralose phase

Journal Title: Journal of Molecular Liquids
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.