LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dysregulation of PP2A-Akt interaction contributes to Sucrose non-fermenting related kinase (SNRK) deficiency induced insulin resistance in adipose tissue

Photo from wikipedia

Objective We previously identified Sucrose non-fermenting related kinase (SNRK) as a regulator of adipose inflammation and energy homeostasis. In this study, we aimed to investigate the role of SNRK in… Click to show full abstract

Objective We previously identified Sucrose non-fermenting related kinase (SNRK) as a regulator of adipose inflammation and energy homeostasis. In this study, we aimed to investigate the role of SNRK in insulin signaling in white (WAT) and brown adipose tissue (BAT). Methods Adipose tissue specific (SNRK deficiency in both WAT and BAT) and BAT specific knockout mouse models were employed. Phosphoproteomic studies were conducted to identify the novel SNRK pathway regulating insulin signaling in adipose tissue. Results SNRK ablation is sufficient to inhibit insulin-stimulated AKT phosphorylation and glucose uptake in both WAT and BAT. Phosphoproteomic study using SNRK deficient versus wild type BAT samples revealed 99% reduction of phosphorylation on Serine 80 of PPP2R5D, the regulatory subunit of Protein phosphatase 2A (PP2A). Drastic (142.5-fold) induction of phosphorylation on Serine 80 of PPP2R5D was observed in SNRK-deficient primary brown adipocytes overexpressing SNRK compared to control protein. In vitro phosphorylation reaction followed by targeted phosphoproteomic detection further confirms that human recombinant SNRK is able to phosphorylate human recombinant PPP2R5D. Dephosphorylated PPP2R5D promotes constitutive assembly of PP2A-AKT complex, therefore inhibits insulin-induced AKT phosphorylation and subsequent glucose uptake in both BAT and WAT. Knockdown of PPP2R5D in adipocytes can improve insulin sensitivity in adipocytes without SNRK expression. Conclusions Our findings demonstrate that SNRK regulates insulin signaling through controlling PPP2R5D phosphorylation, which subsequently impacts PP2A activity and then AKT phosphorylation in both WAT and BAT. SNRK may represent a promising potential target for treating insulin resistance-related metabolic disorders.

Keywords: insulin; bat; adipose tissue; phosphorylation; snrk

Journal Title: Molecular Metabolism
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.