LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

mTORC1 restrains adipocyte lipolysis to prevent systemic hyperlipidemia

Photo from wikipedia

Objective Pharmacological agents targeting the mTOR complexes are used clinically as immunosuppressants and anticancer agents and can extend the lifespan of model organisms. An undesirable side effect of these drugs… Click to show full abstract

Objective Pharmacological agents targeting the mTOR complexes are used clinically as immunosuppressants and anticancer agents and can extend the lifespan of model organisms. An undesirable side effect of these drugs is hyperlipidemia. Although multiple roles have been described for mTOR complex 1 (mTORC1) in lipid metabolism, the etiology of hyperlipidemia remains incompletely understood. The objective of this study was to determine the influence of adipocyte mTORC1 signaling in systemic lipid homeostasis in vivo. Methods We characterized systemic lipid metabolism in mice lacking the mTORC1 subunit Raptor (RaptoraKO), the key lipolytic enzyme ATGL (ATGLaKO), or both (ATGL-RaptoraKO) in their adipocytes. Results Mice lacking mTORC1 activity in their adipocytes failed to completely suppress lipolysis in the fed state and displayed prominent hypertriglyceridemia and hypercholesterolemia. Blocking lipolysis in their adipose tissue restored normal levels of triglycerides and cholesterol in the fed state as well as the ability to clear triglycerides in an oral fat tolerance test. Conclusions Unsuppressed adipose lipolysis in the fed state interferes with triglyceride clearance and contributes to hyperlipidemia. Adipose tissue mTORC1 activity is necessary for appropriate suppression of lipolysis and for the maintenance of systemic lipid homeostasis.

Keywords: fed state; hyperlipidemia; mtorc1; lipolysis; systemic lipid; mtorc1 restrains

Journal Title: Molecular Metabolism
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.