LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristics of the molecular electron density, delocalization effect and hydrogen bonding interaction of nitroxoline

Photo by karan_suthar_ from unsplash

Abstract The density functional theoretical (DFT) calculations have been carried out at the B3LYP/6-311G(d,p) level of theory for nitroxoline monomer and dimer molecule. The dimer molecule formed between two nitroxoline… Click to show full abstract

Abstract The density functional theoretical (DFT) calculations have been carried out at the B3LYP/6-311G(d,p) level of theory for nitroxoline monomer and dimer molecule. The dimer molecule formed between two nitroxoline subunits has the largest stability, and is held together by two O H⋯N hydrogen bonds. Stability of the molecule arising from hyperconjugative interaction and intra/inter molecular charge transfer has been analyzed using natural bond orbital (NBO) analysis. The topological analysis of electron localization function (ELF) provides effect of delocalization. Quantum theory of atoms in molecule (QTAIM) has been applied to gain deep understanding to the existence of intra- and inter-molecular interaction.

Keywords: hydrogen; delocalization; characteristics molecular; density; effect; interaction

Journal Title: Journal of Molecular Structure
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.