LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one: Synthesis, spectral, thermal, fluorescence, DFT calculations, antimicrobial and antitumor studies

Abstract A new series of mononuclear oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of a quinolinone ligand; 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one (H 2 L) have been synthesized. The metal complexes were characterized by different… Click to show full abstract

Abstract A new series of mononuclear oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of a quinolinone ligand; 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one (H 2 L) have been synthesized. The metal complexes were characterized by different techniques such as elemental and thermal analyses, IR, 1 H NMR, electronic, ESR, mass spectra and powder XRD, TEM in addition to magnetic susceptibility and conductivity measurements. The quinolinone ligand acts as a dibasic bidentate ligand forming mononuclear complexes, which can be formulated as: [(L)VO(H 2 O) 2 ]·0.5H 2 O, [(L)M(NO 3 ) x (H 2 O) y ]·nH 2 O; M = Ce or Th, x = 1 or 2, y = 3 or 4 and n = 2 or 7 and [(L)UO 2 (H 2 O) x (MeOH) y ]·nH 2 O; x = 2 or 3, y = 0 or 1 and n = 0.5 or 2.5. The photoluminescent properties of the prepared complexes were studied. The ligand and its thorium(IV) complex are characterized by an intense green emission. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats–Redfern equations. The geometry of the ligand and its oxovanadium(IV) complex has been optimized using density functional theory (DFT). Total energy, energy of HOMO and LUMO, dipole moment and structure activity relationship were performed and confirmed practical antimicrobial and antitumor results. The antimicrobial activity of the ligand and its metal complexes was conducted against the microorganisms S. aureus , K. pnemonia , E. coli, P. vulgaris and C. albicans and the MIC values were determined. The antitumor activity of the ligand and its metal complexes was investigated against human Hepatocelluar carcinoma and human breast cancer cell lines.

Keywords: oxovanadium cerium; thorium dioxouranium; thorium; antitumor; cerium iii; iii thorium

Journal Title: Journal of Molecular Structure
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.