LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, characterization, experimental and theoretical structure of novel Dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN 3 ]pyridine-κN})metal(II) compounds, metal = Mn, Co and Ni

Abstract The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D… Click to show full abstract

Abstract The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S = 1; and (iv) for all [M(L1)2Cl2] and [M(L)2Cl2] complexes, with M = Mn, Co and Ni, the cis-cis-trans and the trans-trans-trans isomers, with the pyridyl groups trans to each other, have the lowest energy.

Keywords: metal; dichloro bis; triazol pyridine; pyridine metal

Journal Title: Journal of Molecular Structure
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.