Abstract Considering the potential biological application of isobenzofuranones, especially as agrochemical defensives, two novel epoxides, (1aR,2R,2aR,5S,5aS,6S,6aS)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (9), and (1aS,2S,2aR,5S,5aS,6R,6aR)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (10), were synthesized from the readily available D-mannitol in six steps.… Click to show full abstract
Abstract Considering the potential biological application of isobenzofuranones, especially as agrochemical defensives, two novel epoxides, (1aR,2R,2aR,5S,5aS,6S,6aS)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (9), and (1aS,2S,2aR,5S,5aS,6R,6aR)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (10), were synthesized from the readily available D-mannitol in six steps. The multiplicities of the hydrogens located at the bridge of the bicycle are distinct for epoxides 9 and 10 due to W coupling, and this feature was employed to confirm the assignment of these nuclei. Besides analyses of the 2D NMR spectra, the assignments of the nuclei at the epoxide ring were also inferred from information obtained by theoretical calculations. The calculated 1H and 13C NMR chemical shifts for eight candidate structures were compared with the experimental chemical shifts of 9 and 10 by measuring the mean absolute errors (MAE) and by the DP4 statistical analysis. The structures and relative configurations of 9, and 10 were determined via NMR spectroscopy assisted with theoretical calculations. As consequence of the enantioselective syntheses starting from a natural polyol, the absolute configurations of the epoxides 9 and 10 were also defined.
               
Click one of the above tabs to view related content.