LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical and experimental studies on anticancer drug mitoxantrone

Photo by jrkorpa from unsplash

Abstract Mitoxantrone (MX) is an important antineoplastic drug used for treatment of different types of cancer with lower side effects. The purpose of this study is to shade more light… Click to show full abstract

Abstract Mitoxantrone (MX) is an important antineoplastic drug used for treatment of different types of cancer with lower side effects. The purpose of this study is to shade more light on the mechanism of interaction between MX and biological molecules. This study would result in drug design and development. Molecular structure was computed at the B3LYP/6-31 + G(d) level. All possible intramolecular hydrogen bonding interactions were considered and calculated at the same level. Five conformers of MX were located and computed to lie in the energy range 0.000–48.495 kcal/mol. Molecular reactivity of MX towards biological systems was explored using condensed molecular descriptors, Fukui functions of electrophilic, nucleophilic and free radical attack. Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anticancer potency of MX. The role of charge transfer binding in the interaction of MX with biological molecules was investigated via studying the ability of MX to act as a charge transfer acceptor with known donors using NMR spectroscopy. Charge transfer complex formation was confirmed by proton chemical shift and stability constants were measured from the NMR chemical shift data. Stability constants of MX with donors, phenylene diamine, hexamethyl benzene and pyrene are 4.178, 2.527 and 1.240 M-1 respectively.

Keywords: studies anticancer; theoretical experimental; drug; experimental studies; mitoxantrone; charge transfer

Journal Title: Journal of Molecular Structure
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.