LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl

Photo from wikipedia

Abstract The present study is aiming to explore the effect of 4-Hydroxy-6-methyl-3-(3-quinolin-8-yl-acryloyl)-pyran-2-one (HMQP) and 3-[3-(4-Dimethylamino-phenyl)-acryloyl]-4-hydroxy-6-methyl-pyran-2-one (DMPHP) on mild steel (MS) corrosion in acid solution (1 M HCl). The compound was tested… Click to show full abstract

Abstract The present study is aiming to explore the effect of 4-Hydroxy-6-methyl-3-(3-quinolin-8-yl-acryloyl)-pyran-2-one (HMQP) and 3-[3-(4-Dimethylamino-phenyl)-acryloyl]-4-hydroxy-6-methyl-pyran-2-one (DMPHP) on mild steel (MS) corrosion in acid solution (1 M HCl). The compound was tested at various concentrations (0.001–1 mM) and four temperatures (298, 308, 318, and 328 K) to determine the optimal concentration and temperature range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, weight loss measurement, potentiodynamic polarization measurement (PDP), electrochemical impedance spectroscopy, SEM/EDS and theoretical methods were used. The inhibition efficiencies increase with increase in concentration and decreases with temperature. The maximum inhibition efficiency was found 90% and 85.4% at 298 K in the presence of 1 mM of DMPHP and HMQP respectively. The experimental adsorption data obeyed the Langmuir isotherm model. The polarization parameters suggest that DMPHP and HMQP are mixed type inhibitors. The results of the EIS study suggest that these compounds inhibit corrosion by adsorption mechanism. A good correlation between theoretical and experimental results was obtained.

Keywords: performance computational; studies two; mild steel; computational studies; corrosion

Journal Title: Journal of Molecular Structure
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.