LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A combined experimental and computational study of electrochemical and photophysical properties of new benzophenone derivatives functionalized with N-substituted-phenyl-1,3,4-thiadiazole-2-amine

Photo from archive.org

Abstract New benzophenone derivatives with N-substituted-1,3,4-thiadiazole including different substituents were synthesized and characterized by using FTIR, NMR, UV/Visible, and fluorescence spectroscopies and cyclic voltammetry. The effect of –F, -Cl, –OCH3… Click to show full abstract

Abstract New benzophenone derivatives with N-substituted-1,3,4-thiadiazole including different substituents were synthesized and characterized by using FTIR, NMR, UV/Visible, and fluorescence spectroscopies and cyclic voltammetry. The effect of –F, -Cl, –OCH3 and –NO2 substitutions at ortho-, meta-, para-positions on the photoluminescence properties of the molecules have been investigated. The results indicate that the electron-donating and electron-withdrawing moieties at the ortho-, meta-, and para-positions have an important effect on the photoluminescence properties of the molecules. The calculated the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels are in the range of (−5.55) to (−5.65) eV and (−2.83) to (−3.02), respectively. The lower LUMO energy levels were observed for the molecules with –OCH3 substituents due to the donor strength of the substituent. Excited states and electrochemical properties of the molecules were also comprehensively and quantitatively studied by Density Functional Theory and Time-Dependent Density Functional Theory calculations. Experimental trends were successfully revealed by calculated data.

Keywords: properties molecules; benzophenone derivatives; new benzophenone; experimental computational; combined experimental

Journal Title: Journal of Molecular Structure
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.