LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ST8 micellar/niosomal vesicular nanoformulation for delivery of naproxen in cancer cells: Physicochemical characterization and cytotoxicity evaluation

Photo by jupp from unsplash

Abstract Naproxen (NPX) is a non-steroidal anti-inflammatory drug (NSAID) used against a variety of diseases, including autoimmune disorders and chronic inflammations. However, low water solubility limits its therapeutic efficacy and… Click to show full abstract

Abstract Naproxen (NPX) is a non-steroidal anti-inflammatory drug (NSAID) used against a variety of diseases, including autoimmune disorders and chronic inflammations. However, low water solubility limits its therapeutic efficacy and novel nanoformulations are required to bypass its poor bioavailability to reach its therapeutic effect. The purpose of the study was to investigate the role of the nanoformulation of biocompatible molecules; Squalene (S) and Tween 80 (T8) Micellar/Niosomal Vesicles (ST8MNV) prepared, by thin-film hydration method and their potential as a drug delivery system for NPX. The percentage of encapsulation efficiency was calculated to be 99.5 ± 0.2% for 5% of NPX weight in total ingredients of micellar/niosomal vesicles (w/w). The ST8MNV nanoformulation exhibited a slower rate of NPX release from the drug encapsulated over seven days, suggesting a stable complex of NPX. Finally, cell toxicity assay demonstrated that the half-maximal inhibitory concentrations (IC50) of NPX were drastically reduced by ST8MNV nanoformulation in MCF-7, A549, HeLa, and MDA-MB-231 cancer cell lines. Our data show this micellar/niosomal naproxen nanoformulation is a great candidate for the future in vitro and in vivo studies for potential clinical anti-inflammatory and anticancer applications.

Keywords: st8 micellar; micellar niosomal; delivery; nanoformulation; cancer; niosomal vesicular

Journal Title: Journal of Molecular Structure
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.