LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural basis of quinolone derivatives, inhibition of type I and II topoisomerases and inquiry into the relevance of bioactivity in odd or even branches with molecular docking study

Photo from wikipedia

Abstract The structural modification of quinolone derivatives has been a hot spot in recent years, especially the modification of the N-1 position, which is the part that this article focuses… Click to show full abstract

Abstract The structural modification of quinolone derivatives has been a hot spot in recent years, especially the modification of the N-1 position, which is the part that this article focuses on. In this paper, series of synthesized quinoline quaternary ammonium salts with odd and even carbon number alkyl groups in N-1 position were used to explain the influence of the alkyl side chain on activity. With respect to all the recently synthesized twenty products, the biological activity results exhibited significant antitumor and antibacterial activity with obvious differences in the target alkyliodine substituted compounds and the antibacterial activities apparently had the prominent odd-carbon number predominance. Compound 8-((4-(benzyloxy)phenyl)amino)-7-(ethoxycarbonyl)-5-propyl-[1,3]dioxolo[4,5-g]quinolin-5-ium (4d) was found to be the most potent derivative with IC50 values of 4±0.88, 4±0.42, 14±1.96, and 32±3.66 against A-549, Hela, SGC-7901, and L-02 cells, respectively, stronger than the positive control 5-FU and MTX. Furthermore, it had the most potent bacterial inhibitory activity of MIC value against Escherichia coli (ATCC 29213) and Staphylococcus aureus (ATCC 8739) at 3.125 nmol mL−1. With respect to molecular simulations, in order to illustrate the possible mechanism of the difference between the series of compounds in the even or odd carbon chain alkyliodine substitution, this paper simulated the conceivable mode and explained the main interactions. Finally, we could find that the position and proportion of hydrogen bonds and other interactions in each series were regarded as the main reasons for this difference in activity.

Keywords: structural basis; basis quinolone; odd even; quinolone derivatives; activity

Journal Title: Journal of Molecular Structure
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.