LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid whole-brain quantitative magnetization transfer imaging using 3D selective inversion recovery sequences.

Photo from wikipedia

Selective inversion recovery (SIR) is a quantitative magnetization transfer (qMT) method that provides estimates of parameters related to myelin content in white matter, namely the macromolecular pool-size-ratio (PSR) and the… Click to show full abstract

Selective inversion recovery (SIR) is a quantitative magnetization transfer (qMT) method that provides estimates of parameters related to myelin content in white matter, namely the macromolecular pool-size-ratio (PSR) and the spin-lattice relaxation rate of the free pool (R1f), without the need for independent estimates of ∆B0, B1+, and T1. Although the feasibility of performing SIR in the human brain has been demonstrated, the scan times reported previously were too long for whole-brain applications. In this work, we combined optimized, short-TR acquisitions, SENSE/partial-Fourier accelerations, and efficient 3D readouts (turbo spin-echo, SIR-TSE; echo-planar imaging, SIR-EPI; and turbo field echo, SIR-TFE) to obtain whole-brain data in 7, 10, and 18 min for SIR-TFE, SIR-EPI, SIR-TSE, respectively. Based on numerical simulations, all schemes provided accurate parameter estimates in large, homogenous regions; however, the shorter SIR-TFE scans underestimated focal changes in smaller lesions due to blurring. Experimental studies in healthy subjects (n = 8) yielded parameters that were consistent with literature values and repeatable across scans (coefficient of variation: PSR = 2.2-6.4%, R1f = 0.6-1.4%) for all readouts. Overall, SIR-TFE parameters exhibited the lowest variability, while SIR-EPI parameters were adversely affected by susceptibility-related image distortions. In patients with relapsing remitting multiple sclerosis (n = 2), focal changes in SIR parameters were observed in lesions using all three readouts; however, contrast was reduced in smaller lesions for SIR-TFE, which was consistent with the numerical simulations. Together, these findings demonstrate that efficient, accurate, and repeatable whole-brain SIR can be performed using 3D TFE, EPI, or TSE readouts; however, the appropriate readout should be tailored to the application.

Keywords: selective inversion; sir; sir tfe; brain; whole brain

Journal Title: Magnetic resonance imaging
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.