LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MRI-based mechanical competence assessment of bone using micro finite element analysis (micro-FEA): Review.

Photo from wikipedia

Areal bone mineral density (aBMD) from dual-energy x-ray absorptiometry (DEXA) and volumetric bone mineral density (vBMD) have demonstrated limited capabilities in the evaluation of bone mechanical competence and prediction of… Click to show full abstract

Areal bone mineral density (aBMD) from dual-energy x-ray absorptiometry (DEXA) and volumetric bone mineral density (vBMD) have demonstrated limited capabilities in the evaluation of bone mechanical competence and prediction of bone fracture. Predicting the macroscopic mechanical behavior of the bone structure has been challenging because of the heterogeneous and anisotropic nature of bone, such as the dependencies on loading direction, anatomical location, and sample dimensions. Magnetic resonance imaging (MRI) has been introduced as a promising modality that can be coupled with finite element analysis (FEA) for the assessment of bone mechanical competence. This review article describes studies investigating MRI-based micro-FEA as a potential non-invasive method to predict bone mechanical competence and facilitate bone fracture risk estimation without exposure to ionizing radiation. Specifically, the steps, applications, and future potential of FEA using indirect and direct bone imaging are discussed.

Keywords: bone; finite element; mechanical competence; assessment bone; element analysis

Journal Title: Magnetic resonance imaging
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.