Abstract Hybrid lead-halide perovskites are widely used in a variety of optoelectronic applications, including perovskite solar cells (PSCs), perovskite light-emitting diodes (PeLEDs), perovskite photodetectors (PPDs), and scintillators. Recently, it was… Click to show full abstract
Abstract Hybrid lead-halide perovskites are widely used in a variety of optoelectronic applications, including perovskite solar cells (PSCs), perovskite light-emitting diodes (PeLEDs), perovskite photodetectors (PPDs), and scintillators. Recently, it was demonstrated that bulky organic cations (BOCs) can be used as surface passivation agents to fine-tune the dimensionality of lead-halide perovskites, making it possible to tailor their optoelectronic properties and enhance their stability. This special feature has further improved the commercialization potential of perovskite-based optoelectronic devices. In this article, we provide a comprehensive review of the recent progress in low/multi-dimensional perovskites prepared via BOC treatment and their performance in various optoelectronic devices. We begin by introducing the special features and fundamental properties of lead-halide perovskites with different dimensionalities and the working mechanism of BOC treatments. Thereafter, we separately highlight and discuss the device architecture and performance breakthroughs of BOC-treated perovskites in (i) PSCs, (ii) PeLEDs, and (iii) PPDs and scintillators, emphasizing works published from 2018 till now. For each application, the influence of BOC treatments on device performance and stability is discussed. At the end of this review, we provide our insights on future challenges and commercialization opportunities for BOC-treated perovskites in the field of optoelectronics.
               
Click one of the above tabs to view related content.