Abstracts Despite numerous studies making an effort to attain a thorough understanding of the liquid-metal-embrittlement (LME) phenomenon, the metallurgical facet of this catastrophic event remains unclear in iron/zinc (Fe/Zn) systems.… Click to show full abstract
Abstracts Despite numerous studies making an effort to attain a thorough understanding of the liquid-metal-embrittlement (LME) phenomenon, the metallurgical facet of this catastrophic event remains unclear in iron/zinc (Fe/Zn) systems. While it has been frequently reported that the presence of austenite is an essential prerequisite for LME formation, the present study showed that fully ferritic structure is prone to LME phenomenon and has a high susceptibility to LME-cracking which makes it a novel observation adding to a pool of knowledge regarding LME occurrence. The elemental distribution analysis near the LME crack-tip indicated that liquid Zn was not present which confirmed solid-state grain boundary diffusion was a plausible description of LME-cracking. The occurrence of grain dropout as well as a Zn-containing crack in grain boundary without any branches with other cracks showed that grain boundary sensitization has assisted LME-cracking.
               
Click one of the above tabs to view related content.