Abstract CuCr2O4 thin films grown by physical vapour deposition were studied in order to evaluate their potential as absorber material for the next generation of concentrated solar power plants. A… Click to show full abstract
Abstract CuCr2O4 thin films grown by physical vapour deposition were studied in order to evaluate their potential as absorber material for the next generation of concentrated solar power plants. A series of Cu-Cr-O thin films was deposited by reactive ion beam sputtering. The Cr/Cu ratio in the sputter target is demonstrated as the most important parameter to achieve the intended film stoichiometry. In-air annealing at 800°C leads to structural transformations of the as-deposited films and results in phase compositions according to those expected from the ternary Cu-Cr-O phase diagram. Tetragonal CuCr2O4 with 98.6 at.% phase purity regarding the solid film constituents is obtained for the appropriate Cr/Cu ratio in the sputter target. CuCr2O4 thin films absorb light in the entire solar spectral range from 300 nm to 2500 nm. Their energy gap is found to be
               
Click one of the above tabs to view related content.