LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ loading and x-ray diffraction quantification of strains in hydroxyapatite particles within a 3D printed scaffold

Photo from archive.org

Abstract A 3D printed scaffold consisting of a composite with very high volume fraction of particulate hydroxyapatite (hAp, 74 vol.%) and small volume fraction of poly-lactic-co-glycolic acid (26 vol.%) was loaded in… Click to show full abstract

Abstract A 3D printed scaffold consisting of a composite with very high volume fraction of particulate hydroxyapatite (hAp, 74 vol.%) and small volume fraction of poly-lactic-co-glycolic acid (26 vol.%) was loaded in compression, and the internal strains in the hAp phase were measured by high-energy x-ray diffraction. Diffraction patterns were recorded at multiple positions in the scaffold at cross-head displacements of 0, -0.52 and -0.62 mm (2.0 mm total scaffold height). The 00.2 and 21.0 hAp strains never exceeded 2 × 10−4, and most positions showed strains ≤ 1 × 10−4, which was the magnitude of the experimental uncertainty.

Keywords: ray diffraction; loading ray; situ loading; diffraction quantification; diffraction; printed scaffold

Journal Title: Materialia
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.