LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metamorphosis of three-dimensional kirigami-inspired reconfigurable and reprogrammable architected matter

Photo from wikipedia

Abstract Most shape-morphing materials are limited to one-to-one shape-changing process, i.e., one design corresponds to one target shape, thus it is hard to be reshaped due to the constraint of… Click to show full abstract

Abstract Most shape-morphing materials are limited to one-to-one shape-changing process, i.e., one design corresponds to one target shape, thus it is hard to be reshaped due to the constraint of limited mobilities (degrees of freedom). Here, we propose harnessing kinematic bifurcation in mechanisms with multiple branched transformation paths to achieve enhanced reconfigurability and shape reprogrammability in a new class of three-dimensional (3D) kirigami-inspired architected matter. The reconfigurable and reprogrammable architected matter is constructed from planar tessellation of 3D kirigami-inspired transformable modules. The module consisting of eight closed-loop connected cubes exhibits both 3D non-bifurcated and bifurcated transformation modes, the motions of which are well captured by the developed kinematics model. The modules can be periodically tessellated in plane to form a flat, thick panel in both a diluted (with voids) and compact (without voids) pattern with multiple encoded, compatible transformation modes. Consequently, it can undergo a series of consecutive shape changes by reconfiguring into varieties of 3D transformable architectures that are conceptually in analogy to metamorphosis in some living organisms during growth. The endowed rich mobilities are found to derive from the kinematic bifurcation. Among them, a unique transformed 3D architecture can be further reprogrammed to reconfigure into multiple architected shapes with zero and non-zero Gaussian curvature through both forward and inverse designs. Such 3D reconfigurable kinematic matter is attractive for potential applications in reconfigurable metamaterials and morphing architectures.

Keywords: kirigami inspired; shape; matter; three dimensional; architected matter

Journal Title: Materials Today Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.