In this article, simultaneous effects of coagulation (blood clot) and variable magnetic field on peristaltically induced motion of non-Newtonian Jeffrey nanofluid containing gyrotactic microorganism through an annulus have been studied.… Click to show full abstract
In this article, simultaneous effects of coagulation (blood clot) and variable magnetic field on peristaltically induced motion of non-Newtonian Jeffrey nanofluid containing gyrotactic microorganism through an annulus have been studied. The effects of an endoscope also taken into consideration in our study as a special case. The governing flow problem is simplified by taking the approximation of long wavelength and creeping flow regime. The resulting highly coupled differential equations are solved analytically with the help of perturbation method and series solution have been presented up to second order approximation. The impact of all the sundry parameters is discussed for velocity profile, temperature profile, nanoparticle concentration profile, motile microorganism density profile, pressure rise and friction forces. Moreover, numerical integration is also used to evaluate the expressions for pressure rise and friction forces for outer tube and inner tube. It is found that velocity of a fluid diminishes near the walls due to the increment in the height of clot. However, the influence of magnetic field depicts opposite behavior near the walls.
               
Click one of the above tabs to view related content.