LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The tight junction protein cingulin regulates the vascular response to burn injury in a mouse model.

Photo by markusspiske from unsplash

Edema formation due to the collapse of physiological barriers and the associated delayed healing process is still a central problem in the treatment of burn injuries. In healthy individuals, tight… Click to show full abstract

Edema formation due to the collapse of physiological barriers and the associated delayed healing process is still a central problem in the treatment of burn injuries. In healthy individuals, tight junctions form a barrier to fluid and small molecules. Cingulin is a cytoplasmic component of tight junctions and is involved in the regulation of the paracellular barrier. Endothelial specific cingulin knock-out mice provide new insight into the influence of tight junction proteins on edema formation and angiogenesis during wound healing. Knock-out mice lacking the head domain of cingulin in endothelial cells (CgnΔEC) were created by breeding Cgnfl/fl mice with Tie1-cre mice. Using a no-touch hot air jet a burn trauma was induced on the ear of the mouse. Over a period of 12 days microcirculatory parameters such as edema formation, angiogenesis and leukocyte-endothelial interactions were visualized using intravital fluorescence microscopy. At baseline, CgnΔEC mice surprisingly showed significantly less tracer extravasation compared to Cgnfl/fl littermates, whereas, after burn injury, edema was consistently higher in CgnΔEC mice. Non-perfused area after wounding was increased, but there was no difference in vessel diameters, contraction or dilation of arteries in CgnΔEC mice. Moreover, cingulin knock-out did not cause a difference in leukocyte adhesion after burn injury. In summary, cingulin limits non-perfused area after burn injury and maintains the paracellular barrier of blood vessels. Since edema formation with serious systemic effects is a central problem of burn wounds, understanding the importance of tight junction proteins might help to find new treatment strategies for burn wounds.

Keywords: burn injury; edema formation; cingulin; injury; tight junction

Journal Title: Microvascular research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.