LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On reduced-complexity robust adaptive control of switched Euler–Lagrange systems

Photo by averey from unsplash

Abstract State-of-the-art adaptive or robust adaptive techniques for several classes of uncertain switched systems demand structural knowledge of the system dynamics in order to appropriately select the regressor terms in… Click to show full abstract

Abstract State-of-the-art adaptive or robust adaptive techniques for several classes of uncertain switched systems demand structural knowledge of the system dynamics in order to appropriately select the regressor terms in the adaptive law. As a result, the number of unknown parameters to be adapted increases with system complexity, which can lead to very complex adaptive laws. In this work we propose, for the relevant class of Euler–Lagrange systems subject to time-dependent slow switching, a switched robust adaptive control framework with reduced complexity: the number of unknown parameter to be adapted is independent on the system complexity, whereas the regressor terms in the adaptive laws do not require any structural knowledge of the system dynamics. Stability analysis is provided to illustrate the benefit of the proposed design, and the performance of the controller is verified using a switched system stemming from the combination of mooring and free-hanging operations in dynamic positioning of offshore ships.

Keywords: euler lagrange; robust adaptive; system; complexity; adaptive control; lagrange systems

Journal Title: Nonlinear Analysis: Hybrid Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.