LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes

Photo by prachi30gautam from unsplash

Abstract As a potential multi-electron electrode material for next generation lithium ion batteries, iron fluoride (FeF3) and its analogues are attracting much more attentions. Their microstructures are the key to… Click to show full abstract

Abstract As a potential multi-electron electrode material for next generation lithium ion batteries, iron fluoride (FeF3) and its analogues are attracting much more attentions. Their microstructures are the key to achieve good electrochemical performances. In this work, FeF3·3H2O nano-flakes precursor with high crystallinity and flower-like morphology is synthesized successfully, by a liquid precipitation method using Fe(NO3)3·9H2O and NH4HF2 as raw materials. The formation and the crystal growth mechanisms of the FeF3·3H2O precursors are investigated and discussed. After different temperature heat-treatment and followed by ball-milling with Super P, the as-prepared FeF3.0·33H2O/C and FeF3/C nanocomposites are used as cathode materials for lithium ion batteries. The FeF3.0·33H2O/C nanocomposite exhibits a noticeable initial specific capacity of 187.1 mAh g−1 and reversible specific capacity of 172.3 mAh g−1 at .1 C within a potential range of 2.0–4.5 V. The capacity retention is as high as 97.33% after 50 cycles. Combined with HRTEM test, it confirms that the hydration water is not harmful but useful, namely, the tunnel phase formed with the hydration water is crucial to unobstructed Li+ diffusion, and therefore leading to excellent electrochemical performances.

Keywords: hierarchical nano; iron fluoride; lithium; hydration water; hydration

Journal Title: Nano Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.